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OPTIMAL INFORMATION FOR APPROXIMATING 
PERIODIC ANALYTIC FUNCTIONS 

K. YU. OSIPENKO AND K. WILDEROTTER 

ABSTRACT. Let SO := {z e ?: I Imzj < /} be a strip in the complex plane. 
For fixed integer r > 0 let Ho denote the class of 2X-periodic functions f, 

which are analytic in So and satisfy If(r)(z)I < 1 in So. Denote by Hroot the 
subset of functions from H ,B that are real-valued on the real axis. Given 
a function f e He ,, we try to recover f(() at a fixed point ? e R by an 
algorithm A on the basis of the information 

If = (ao(f),al(f),...,an-l(f),bi(f).), 

where aj(f), bj(f) are the Fourier coefficients of f. We find the intrinsic error 
of recovery 

E(H a I) inf sup lf(?)-A(If)j. 
A: jC2 -1 -C fCH" 

Furthermore the (2n - 1)-dimensional optimal information error, optimal sam- 

pling error and n-widths of HroR in C, the space of continuous functions on 
oo,)3 

(0,2wr], are determined. The optimal sampling error turns out to be strictly 
greater than the optimal information error. Finally the same problems are in- 
vestigated for the class Hp.,o consisting of all 2X-periodic functions, which are 
analytic in So with p-integrable boundary values. In the case p = 2 sampling 
fails to yield optimal information as well in odd as in even dimensions. 

INTRODUCTION 

Let W be a class of 2wr-periodic, real-valued (or complex-valued) functions. Sup- 
pose that W C C, where C is the space of continuous functions on [0, 27] endowed 
with the supremum norm. Consider the problem of optimal recovery of the linear 
functional U on W given by Uf = f((), i.e. point evaluation in (, on the basis of 
the information 

If =(Lif, . . Lnf) 

where L1,... ,Ln are continuous linear functionals on W. 
By an algorithm we mean any map (not necessarily linear or continuous) A: 

Zn -* Z, where Z = R or C depending on whether W is a set of real-valued or 
complex-valued functions. 
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The algorithm A produces the error 

EA(W, I) sup Uf-A(If) . 
feW 

The value 

E(W, I):= inf EA(W, I) A: Z",--Z 

is called the intrinsic error of the problem. An algorithm A*, for which 

EA} (W, I) = E(W, I) 

is said to be an optimal algorithm. 
The optimal information error for estimating W in C by n linear observations is 

defined as follows: 

(1) in(W, C) := inf inf sup f - A(If)llc. . L ..T A: Zt--C fecW 

Any continuous linear functionals L, . . . , L* for which the infimum is attained are 
called optimal. 

If we restrict the class of admissible linear observations to function values, then 
we have the value 

Sn(WC) = inf inf sup 11f-A(f(zi),.. ,f(Zn)) C, 
Z...,ZtC [0,27r) A: Zn--C f cW 

which is called the optimal sampling error. If the infimum is attained at the points 
z* ... ' Z4, then these points are said to be optimal. 

The study of optimal recovery problems has received much attention in the last 
years. For a detailed survey we refer to the papers of Micchelli and Rivlin [8] and 
[9] as well as to the book of Traub and Wozniakowski [16]. The values in and Sn 
were considered by Fisher and Micchelli [6] and [7] for the unit balls of Hilbert 
spaces of nonperiodic functions with simply connected domain of holomorphy. 

Let So := {z c C: IImzI < 3} be a strip in the complex plane. For fixed 
integer r > 0 let H' denote the Hardy-Sobolev class of functions f, which are 

27-periodic, analytic in So, and satisfy jf(r)(z)j < 1 in So. Denote by HVrR the 
subset of functions from Hr , that are real-valued on the real axis. In the case 
r = 0 we will omit the upper index r. The Fourier coefficients of f are given by 

127r 
ak(f) := f(x)coskxdx, k =0,1,... 

1 27r 

bk(f) := f(x) sinkx dx, k= 1,2... 

In Section 1 we find an optimal algorithm for approximating f(?), ? c [,27r), 
on the basis of the information 

(2) If = (ao(f),al(f),...,anl(f),bi(f),...,bn-l(f)), 

uniformly for all f C Ho,13. We show that the error E(H',3, I) of an optimal 
algorithm is given by 10. c, where ID3r is the r-th indefinite integral of a periodic 
Blaschke product with 2n equidistant, real zeros. 

In Section 2 this result is applied to determine the optimal information error 
i2n-l (H"R3, C). We show that the Fourier coefficients are optimal information and 
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that 

i2- 1(Hjro C) = d2n- (H'0,0 I C) = d2 (Hoo,3C) 
62n-1 (H C) c 

00,0 C)= II'Dn,r I 

where d2n-1, d2n-' and 62n-1 denote the Kolmogorov, Gel'fand and linear widths, 
respectively. Osipenko [13] proved that a corresponding equation is valid in the 
even dimensional case. Thus i2n-l(H rR , C) = i2n(H rjT, C) and all three widths 

of order 2n - 1 and 2n coincide and are equal to IIr ConAC 
In the case r = 0 we find in addition the optimal error s2n-i(Ho,f,, C), which 

coincides with 82n-l(HR At C). It turns out that equidistant nodes are optimal. 
However, s2n I(H of3, C) is strictly greater than i2nl1(HoQ 0C), i.e. sampling in 
optimal nodes does not yield optimal information. In particular, we calculate the 
value 

82n- I (HR I; C) 

i2n-1 (H , C) 

which gives a quantitative measure, how much sampling fails to be optimal. This 
situation is in a sharp contrast to the even dimensional case, where it is known 
that sampling in equidistant nodes is optimal information (cf. Osipenko [11] and 
Wilderotter [18]). Moreover, we recall that Fisher and Micchelli [5] proved that for 
a simply connected domain of holomorphy sampling always yields optimal informa- 
tion. 

In Section 3 we consider the problem of optimal recovery and optimal information 
for the class Hp,Q3, 1 < p < o0. Here Hp,Q denotes the set of all functions f, which 
are 27r-periodic, analytic in So, and satisfy 

sup X (If (t + iq) P + If (t -iq) IP) dt) < 1. 
o<n7<, 47r 

For fixed points z1,... , Zn C [0, 27r) with multiplicities 'i, . .. , vn E N and ( E 

[0, 27) we find an optimal algorithm and the intrinsic error for approximating f(4:) 
f C Hpo, on the basis of the Hermite information 

If = f(zi) - .. f(> - )(Z1) .. vf(Zn) f(vr-1)(Zn) 
We also find the optimal sampling error sn(Hpo, C). It turns out that sampling in 
equidistant nodes is optimal for all p and all n. Moreover, for p = 2 we compare 

sn(H2,0, C) with the optimal information error i,(H2,Q, C). We show that these 
quantities do not coincide and calculate the ratios 

82n -1 (H2,fl, C) S2n (H2,3 A C) 
i2n - 1 AH,,3 v C) i 2n AH,,3 X C) 

The nonoptimality of sampling in the even dimensional case is quite remarkable. 
In all examples studied so far for the imbedding of Hp,fl in Lq with p > q (see 
Osipenko [11], Wilderotter [19]) we found that sampling in 2n equidistant nodes 
yields optimal information for i2n. The present paper shows that this fails to be 
valid for the imbedding of H2,f in C. 

Throughout the paper we use substantially elliptic function techniques. We 
emphasize that pretty optimal elliptic function bounds date back already to the 
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classical work of N. I. Achieser [1], which influenced and stimulated the present 
article. 

1. OPTIMAL RECOVERY FROM FOURIER COEFFICIENTS 

This section deals with the optimal recovery of the linear functional Uf = f 
( C [0,27r), on H r203, using the information (2). Of central importance for our 
considerations is the following well known general duality formula due to Smolyak 
(we use here the complex version of Smolyak's result proved by Osipenko [10]): 

(3) E(HgrI)= sup If(()I. 
f CH 

If =0 

Moreover, the minimal error is achieved by a linear method of the form 
n-i 

(4) A*(If) = coao(f) + (cjaj(f) + djb(f)). 
J=1 

By an extremal function we mean any function fo E Ho ,3 with Ifo = 0 and 

Ifo(C)I = E(Hr, 3, I). 
Our further strategy will be to determine explicitly an extremal function fo. For 

this purpose we need some auxiliary facts about periodic Blaschke products. 
In order to introduce periodic Blaschke products, we transfer the analysis from 

the strip S2 to the annulus Q := {w c C : R < IwI < Rb}, where R = e-d. 
The universal covering transformation w = elZ maps So onto Q and induces a 

correspondence f(z) -* g(w) = f ( lnw) between analytic periodic functions in 

So and analytic functions in Q. 
A Blaschke product B of degree m on Q is a function of the form 

B(w) = exp (- (g(wc j) + ih(w, a)). 
j=1 

Here a,...,am are points in Q, g(w,ci.) is the Green's function for Q with sin- 
gularity at a. and h(w, a.) is the harmonic conjugate of g(w, a3). In general B is 
multiple valued. However, if we choose m = 2n and locate all points al, ... ., a2n on 
the unit circle {w c C : Iwl = 1}, it turns out that B is single valued. For a proof 
of the last fact and further details on Blaschke products we refer to Fisher [4] and 
Wilderotter [18]. 

In particular we may choose the 2n zeros on the unit circle to be equidistant. 
Let a = exp (i(j - - ) for j = 1, . . ., 2n and 

B2n(w) = exp (-(g(w, a) + ih(w, a))). 

Finally we go back again from the annulus to our original setting of the strip and 
introduce the periodic Blaschke product B2n on So by defining B2n(z) := B2n(e'z) 

Blaschke products are closely related to elliptic functions. Throughout the 
present paper we will use the following terminology (see for example Achieser [2], 
Bateman [3]): sn(z, k), cn(z, k), and dn(z, k) denote the Jacobi elliptic functions 
with modulus k (further we will note the dependence of the Jacobi elliptic functions 
on the modulus only in case the modulus is different from k); the complementary 
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modlulus is given by k' = 1 - k2 and the complete elliptic integrals of the first 
kind with moduli k and k' are (lenote(l by K and K', respectively. We always 
suppose that K and K' satisfy the equation 

7rK' 
=0a. 

2K 

With this notation B212 can be written in the form (see Osipenko [11]): 

)211 (z) = k71 fjsn (-z - (j - 1) 

Using the first fundamental transformation of elliptic functions of degree 2n one 
can show that 

B271 (z) = -\/Asn ( z, A 

Here A is the complete elliptic integral of the first kind with modulus A determined 
by the equation 

A' K' 
A = 2n-. 
A K 

In order to cope with the optimal recovery problem, we introduce the r-th in- 
(efinite integral n r of -Bn (lefine(l by 

(D = B2n, e 4P3 D, *4 
3 

0 ' r >1. 

Here 
DC cos(kt - rr/2) 

Drt) = 2~. kr r1,2,.. 
k=1 

is the Bernouilli Monospline, while 
1 f27 

(f * g)(z) = lVr f(z - t)g(t) dt 

denotes the convolution of two periodic functions. 
Osipenko [13] gave the following explicit representation for atd and IIri rIl( : 

_ r 
- 

sin((2k + I)nz - rr/2) 

VZ) Anr amp (2k + 1)' sinll((2k + 1)2n'1)' 
C'C (-l)k(r+1) r=. 

II 
1I 

= 
v'AnIr' E (2k + 1)' sinh((2k + 1)2nf3)' 

From this one can read off that J4)3 = 0. 
We now are ready to formulate our first main result. 

Theorem 1. For all integers r > 0 and with I defined by (2), 

E(H> i, I) = IkIC.r 

Proof. W\e can assume without loss of generality that the fixed evaluation point in 
the problem (3) is equal to 4 = 0. Put 

~(z) := { w z- + - , r =2k, 
1. 4r(Z), r= 2k + 1. 



1584 K. YU. OSIPENKO AND K. WILDEROTTER 

We wish to show that o is an extremal function of the problem (3). Note that 
IPp = 0, Jp(O)1 = 1I4>D, c, and (o is an even function. Suppose there exists a 
function fo c Hoo;o with Ifo = 0 and Jfo(0)j > Jp(O)1. After scaling fo with the 
factor exp(-i arg fo(0)), we may assume fo(0) to be real and positive. Let us define 

fi (z) = fo(z) + fo(Z) f2 (z) fi (z) + fi (-z) 
2 2 

Then f2 E H",3, If2 = 0, and f2(0) = fo(0). Moreover, f2 is an even function. Set 

p p= (0)/f2(0), F - pf2 

We claim that the function F has at least 2n + 1 distinct zeros in [-iv, iv). Clearly 
F(O) = 0. Moreover, since both o and f2 are even functions, F does not change 
its sign in ? = 0. On the other side we have IF = 0, since IN = If2 = 0. The 
condition IF = 0 means that 

27r 
j F(x)coskxdx=0O k=0,1, ... ,n-1, 

/2r 
F(x) sin kx dx = 0O k = 1, 2, ..., n-l. 

Since the trigonometric polynomials of degree at most n - 1 are a Tchebycheff 
system of dimension 2n - 1, it follows from Pinkus [15, Chap. III, Prop. 1.4], that 
F has at least 2n cyclic sign changes. In addition F has a zero in ? = 0 without sign 
change. Hence F has altogether at least 2n + 1 zeros in [-iv, iv). By Rolle's theorem 
the same conclusion remains valid for the r-th derivative F(r) = (ir)-pf~V) 

Transferring this result from the strip to the annulus, we see that the function 

F(r) (ln w) is single valued and analytic in Q and has at least 2n + 1 zeros in Q. 

By the definition of (DO, we have 

v(r) (91 lnw) - f -B2n (wexp (i 2n)), r = 2k, 
Vt I I -B2n(W), r =2k + 1. 

The boundary values of the Blaschke product B2n satisfy identically JB2n(w)) I 1 
on aQ. Consequently we have for w c aQ 

(r)Qnnw) -F(r) nw) = Pf) (lnw) < IpI < 1 = (r) (Inw) 

Since B2n has 2n zeros in Q, Rouche's theorem implies that F(r) (-lnw) has 

exactly 2n zeros in Q. This is a contradiction and the proof of Theorem 1 is 
complete. O 

2. OPTIMAL INFORMATION AND n-WIDTHS OF o0: 

In this section Theorem 1 is applied to determine the optimal information er- 
ror i2n1 (H , C). It turns out that i2n1 (H , C) coincides with certain odd 
dimensional n-widths. Therefore we start by recalling the definition of the various 
n-widths. 
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Let V be a subset of a normed linear space X. The Kolmogorov n-widths are 

defined by 

dn(V,X) := inf sup inf Jjx-yjjx, 
XA xCEV yCX~t 

where Xn runs over all subspaces of X of dimension n or less. 
The Gel'fand n-widths are defined by 

dn(V,X) := inf sup jjxjjx, 
X,, xCXtOnV 

where Xn runs over all subspaces of codimension at most n (here we assume that 

0 E V). 
The linear n-widths are given by 

6n(V,X) := inf sup jx-Pnxllx, 
P" xCV 

where Pn is any linear operator of X into X of rank at most n. 
Much information on n-widths can be found in the book of A. Pinkus [15]. In 

particular, the following fundamental inequality holds: 

(5) dn (Vi X) , dn (V, X) <_ 6n(Vi X). 

Analogously to (1) we can define the optimal information error in(V, X) for 

estimating V in X by n linear observations. 

Lemma. Assume that V is a centrally symmetric set and 0 C V. Then 

(6) Cln W, X) <_ in (Vi X) <_ 6n(Vi X). 

Proof. The inequality 

in (V, X ) <_ fn ( V, X ) 

evidently follows from the definition. To prove the lower bound consider any con- 

tinuous linear functionals L1, . . . , Ln. For each ? > 0 there exists x, C V such that 

Ljlxy=, = Ln =O and 

sup |lXIIX < |lXE lX +E. 
xCV 

Llx= ... =Letx=O 

For all algorithms A we have 

SXE -A(0, . . ,0)IX + 11 - x - A(0,..., 0)JIX > 2jxEljX. 

Therefore, 

sup jx -A(Lix,..., LnX) Jx _> |lXs X > sup jjXjjx > dn(V,XX). 
xCV xCV 

Llx=-..=Lrx=O 

Taking the infimum over A and L1 .. ., Ln we obtain 

inOs, X) e> dnns, X). f 

Our result reads now as follows: 
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Theorem 2. For all integer r > 0 

i2n- 1 (Hoo:, C) = d2n_1 (H X, C) = d2n-1 (Hr, I C) 

= 62n- 1(HoR I C) = 1lD l l1C- 

Proof. In view of (5) and (6) to establish upper bounds we may restrict ourselves 
to 6(Hr' , C). It follows from Theorem 1 that there exists an optimal method (4) 
such that 

If (0) - A*(If) ?< Il c:,rIIC 

for all f E H". Now let q be an arbitrary fixed point in the interval [0, 27r) and 
set (Trqf)(z) := f (z + ii). Since 

aj (Trqf) = aj (f) cosjq + bj (f) sinjq, 
bj (Trlf) = -a3 (f) sin jq + b3 (f) cosjq, 

we obtain that 
n-1 

fn(t)- coao(f) - ((cj cos jq - dj sin j?7)a3(f) 

+(cj sin jr + dj cos jr)b (f)) ? < II(D3,,Ilc* 

This pointwise estimate holds uniformly in [0, 2wr). Thus we have 

62n- 1 (H" 
R 

IC) < l &3nrI lC - 

As mentioned in the introduction, Osipenko [13] proved that 

(7) d2n (H00103 IC) = d n(H oo, 0, C) = 62n (H oo23 C) = |n rilIC. 

The lower bounds now follow from the monotonicity of the n-widths. D 

Combining (7) with Theorem 2, we get in view of (6) that i2n- 1(Hor, C) and 

i2n(H ,R C) as well as all three kinds of widths of order 2n - 1 and 2n coincide 
and are equal to I I (DO,, I I c. 

The preceding analysis may give the impression that the situation in odd and 
even dimensions is identical. This is definitely not true. Although the differ- 
ent values of the widths are all the same, the properties of optimal information 
are substantially different in odd and even dimensions. In the sequel we will re- 
strict ourselves to the case r = 0. Our course of proof showed that the Fourier 
coefficients (aO(f),aj(f),... ,an-1(f),b(f) ... , bn1(f)) are optimal information 
for i2n-1(HR 3,QC) and consequently also for i2n(HR , C). However, Osipenko 
[11] and Wilderotter [18] proved that in the even dimensional case sampling in 
2n equidistant nodes yields optimal information as well, that is s2n(HR am C) = 

i2n 1(HR , C). We now try to find the optimal sampling error s2n1(HR, :C). 
For this purpose we consider in a first step fixed sampling points z1 ... I Z2n- E 

[0, 27). From the results of Ovchincev [14] and Wilderotter [17] it follows that 
2n-1 K 

inf sup lf-A(f(z1)... f(z2n-1)) 0=kC I|J sn(f(.z-i)) 
A: R2n-1-C fcHd i= C 
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In a second step we minimize the right-hand side of the last equation over all 
possible choices of sampling points. Osipenko [11] showed in a different context 
that 

(8) inf k n2 Ii sn (/ j -.zi)) = 
Z1'--'ZnG[,27r) j= 1 1 

where 

( 00 e-213nm(m+l) ) 2 

I + 2 ,?? 1 e-20nm2 e:+Oe3n 

(An can also be defined as a solution of the equation A'/A = nK'/K). Moreover, 
equidistant nodes are the unique nodes (up to a shift), for which the infimum in 
(8) is attained. Thus 

82n- (H 0 ,C= VkA 2C 

On the other side we have 

00( 0 1 Q = i2n(Ho,~,C) =s2(H2,,,C) = 82n ,oHjc = 

Set ZX := -1) 2 1' j 2n-1, 

bi(z) := vsn (i (-Zn+ 1)) b2(z) k= k /2 sn ((Z - ) 

Using the first fundamental transformation of elliptic functions of degree 2n - 1 it 
can be shown that 

b2(z) = A sn ((2nr- )A2n-1z A2 ) 

where A2n-1 is the complete elliptic integral of the first kind with modulus A2n-1 
It is easy to check that 

11b, 1c =-b1 (2n -) = V', -b211C =b2 (2n-1 ) - 

Consequently 

11bib2j1c= kA2n 

Since equidistant nodes are unique optimal nodes in the extremal problem (8) we 
obtain that /A2 < kA2/1. Thus 

8 2n - 1H WO, 0, C) > i 2n - (Ho,,3, C), 

i.e. sampling does not yield optimal information in odd dimensions. 
More precisely we may calculate the following ratio, which gives a quantitative 

measure, how much sampling fails to be optimal: 

82n- 1 
(HR 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

kA~n V 

re_ -0n2 
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For n = 1 from (9) it follows that 

(Z -o 2Qm(m+l) 2 
k = 4e- K+7= i e2fm2 ) 

Using this equality it is easy to show that 

e- < v < 2e 2 

Thus 1 < Vked2 < 2 for all 3 E (0, +oo). 

3. OPTIMAL SAMPLING AND INFORMATION IN Hp,0 

Denote by Hpoa, 1 < p < oc, the space of all 27r-periodic functions f, which are 
analytic in So and satisfy 

1 f7r 
1 /p 

su ?- (If (t + i)jIP + If(t - id) IP) dt) < 00, < l p 0, 

oo IH" =sup If(z) I < 00. 
ZESSg 

Let Hp,Q be the closed unit ball of J-p,,3. Given an evaluation point ( C [0,2wr) 
consider the problem of optimal recovery of f((), f C Hp,,3, on the basis of the 
Hermite information 

n 

If = (f(Z1),. Jf(v-l-)(z1) . f(z) I ) f("n-')(zn)) AN := , j, 
j=1 

where z1,... , Zn E [0, 2r). The case p = o0 was obtained by Ovchincev [14] and 
Wilderotter [17]. The solution of this recovery problem for 1 < p < o0 reads as 
follows. 

Theorem 3. Set 

W(z) - kN/2 fj sn" (z -zj) 

Then 

I ( W(()Il N even, 
E(Hp~dI)= <2K 1/p 
E(HvI {(-)(()(, N odd. 

An optimal method of recovery is given by 

n vi-I 

(10) f(() E E cSV((,p)f(')(zj 
j=I v=O 
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where 
K W(() 

cj, P) = - i - 

{cnt(?( -z)), N even, 

i -n ( Zj)), 'N odd. 

Proof. The function 

b(z) Ksn-z 

is analytic in S3. Moreover, b(z ? 2i) =-b(z) and , b(x ? i3) 1 for all x c R. 
Thus W(z) = W-d(z) for z C oSd. 

Suppose N is an even number. Consider the function 

g(z) = W(z) dn2= k _ z)) 

Since dna-z is 2Mo-periodic and does not vanish in the strip S,3, g I or. Set 

For f c inupfr consider the integral 

Jf 7 J= g(z) g(z) 2 2f(Z) dz, 

where F0 : [-i/3, 2ir- i/] U [i/3, 2ir ? i/3]. Using the properties of elliptic functions, 
we have 

sn 

The element of integration in Jf is 27r-periodic. So we can rewrite Jf in the 
following form 

7rKW(C) if (f7r z))n ( i )) 

where Fe is the boundary of the rectangle -e < Re z < 2ir - e, j Im zj < /3, and e 
such that E, .,.. . ., Zn lie inside this rectangle. By the residue theorem 

(11) Jf =f() - S S c3z,((,p)f(")(zd). j=1 ) i=() 
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For f(z) = g(z) this equality gives 

11 11 ( 7r ) /p 

If f C Hp,Q, then by H6lder's inequality we obtain 

IJfI? 111 g P/q lqftf < (2Kf 1/P P, 0 - p q 

In view of (11) we have 

E (Hp3 I ) < 
(r 

2K lg P1(() l 

On the other hand, 9g := g1Ij-,P- C Hp,Q and Igo = 0. Consequently, 

72K 1/' 
E(Hp,Q,I)= sup If(()I > IgYo(() = (-) 9g((). 

If=0 

Hence 

E (Hp,0 I) (2 f 19M l I 

and (10) is an optimal method of recovery. 
For odd N the same scheme of proof is applied to Jf with 

g(z) = k sn (-(z -( + 7)) W(z) dn/ (K(_ Z)) 

(here we use that sn(u + K) = cn u/ dn u). D] 

Taking into account the equality (8), we have 

Corollary. For all 1 < p < oo and n C N, 

VfA-l ( /n even, 
sn(Hp~nC) = 42K 1/p 

t(kA /A;, nrodd, 

where An is defined by (9). Moreover, equidistant nodes are optimal. 
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Finally we compare in the case p = 2 the optimal sampling error s,(H2,3, C) 
with the optimal information error in(H2,13, C). Osipenko [12] proved that 

1 \ 1/2 

62n-1 (H2,13, C) d2n-l (H2,13, C) (h2 E o h 2jZ3 

j3n=n 

2 e -3n + O(e -50n), 

211 ? e-213 

1 -~~~~~~~~~~~~~/ 
6C2n (H2,3 C) =d2n (Hf2,0, C) =c(eosh 2nX; + 2 E lcosh 2jid 

2 e2S e- On + O (e -50n ) 

In view of (6) the same equalities hold for in(H2,3, C). Thus we obtain 

i2n-1 (H2,13, C) 7r 

2n; H23 CC) =2 - tanh/3 + O?(e-n 

The last result is very interesting, inasmuch as it is the first example known so far 
of a periodic Hardy space imbedding, for which sampling in equidistant nodes does 
not yield optimal information in even dimensions. 
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